
VM/370 Interfaces
for REXX

REXX and VM
started as
partners from
the beginning

• Command procedures
• Editor subcommands
• Prototyping
• Personal computing

REXX provided VM
with a structured

programming
language for

• The Restructured Extended Executor Language
IBM had to use a

mouthful of a name
for some reason

It almost immediately
replaced the older

EXEC and EXEC2 in
the VM community

REXX and VM started as partners from the beginning

I loved this quote: IBM said
“EXEC2 is intended for

manipulating English-like
words as they appear in

computer command
languages”.

REXX was a complete and
fully capable programming

language able to both
replace EXEC2 capabilities

and to promote writing
complex applications

REXX and VM
started as
partners from
the beginning

The REXX language needed VM services to connect
with the environment. Without these services, REXX
connected directly only to a person or to the stack.

• Console input
• Console output
• The program stack which was accessed with console interfaces

VM provided all the interfaces I am going to talk about
today in the same VM release that introduced REXX

VM and REXX complimented each other to produce a
facility that was very much more than the sum of its
parts.

VM Versions

 VM/370
 In use from 1972 to 1979. Free from IBM.

 VM/SP
 In use from 1980 to around 1985 (depending on

when customers changed over to 31 bit XA
architecture)
 EXEC2 processor introduced in Release 1
 REXX introduced in VM/SP Release 3 in 1982 (or 3?)

Why Use
VM/370?

 VM/370 is the last free version of VM
 IBM initially charged for their computers but

provided system software at no cost
 VM/SP was available in source code but … It had to

be purchased from IBM and access was controlled
by contracts.

 VM/SP and later VM versions are unavailable to
hobbyists

 VM/370 has been enhanced by Hercules emulator users
 The community has gathered a large collection of

software and packaged it with a VM system.
 REXX first became available on VM/370 over a

decade ago.

 All the source code is there
 If it doesn’t do what we need, we can change it
 Simplest version of VM. Easiest to modify.

Initial BREXX
Implementation on
VM/370

 A small team of experts built the VM/370 Sixpack Version 1.2
and released it in 2010. Bob O’Hara, Paul Edwards, and Dave
Wade enhanced the earlier version developed by Andy Norrie
and Paul Gorlinsky

 Many popular utilities and language compilers were included

 The Gnu C Compiler was added with a traditional runtime
library.

 The team built a CMS native runtime library. This overcame
memory management problems in the original library.

Initial BREXX
Implementation on
VM/370

 A memory resident BREXX compiler was integrated into CMS.

 BREXX was selected after initial attempts at porting Regina to
CMS proved unsuccessful.

 BREXX was able to reduce the resident memory required by
Regina by almost 80%

 The team built a CMS native runtime library. This overcame
memory management problems in the original library.

 Still (according to Bob) “The BREXX Interpreter is somewhat
flakey”

 Resident BREXX and GCC library routines consumed about
256K

Why modify the
VM/370
Sixpack?

 BREXX had problems. I found it so restricted it was unusable.

 Adrian started the effort to improve things and discussions
ramped up on the h390-vm.groups.io list

 I became involved because I wanted to add compatibility so we
can run more old programs

 Programs from personal libraries or community archives were built
on VM/SP and used its capabilities

 Original REXX was released along with new VM capabilities
 Early REXX programs were built by programmers who expected a

certain set of VM system interfaces and utilities.

 I also wanted to fix things that just did not work.

 It is a fun project!

New (but Old)
Facilities for
REXX on VM

 Trace control interface

 Stack control interface

 BREXX program call interface

 BREXX function call interface

 Access to REXX variables from programs

 REXX function package support

CMS
Immediate
commands for
Halt Execution
and Trace
control

 CMS immediate commands provide a mechanism to enter a
command request while another program is running. Older
immediate commands stopped program execution or runaway
output.

 HX – Halt Execution
 HT – Halt Typing

 CMS Immediate commands for REXX
 HI – Halt Interpretation
 TS – Trace Start
 TE – Trace End

CMS
Immediate
commands for
Halt Execution
and Trace
control

 CMS immediate commands basically set flags. It is up to REXX to
check the flags and take appropriate action.

 The CMS implementation copied the data structures defined in
later VM releases. (It’s basically trivial.)

 Adrian added BREXX changes to test for a request to end
interpretation, or to turn statement tracing on or off.

 The CMS command operands for SET EXECTRAC ON/OFF and
QUERY EXECTRAC were added to setup tracing before a REXX
EXEC starts, and to manage the settings. This is a cleaner
mechanism than having to add trace statements to the EXEC file.

CMS Stack

 <-ATTN LIFO (push)
 Line 1 (oldest line) RDTERM (pull)
 Line 2
 Line 3
 Line 4
 Line 5

 Line n (newest line)

 <- ATTN FIFO (queue)

CMS Stack
Multiple Stacks

 Stack 1
 Line 1 (oldest line)
 Line 2
 Line 3
 Line 4 (newest line)

 Stack 2
 Line 5
 Line 6

 Stack 3
 ATTN LIFO

 Line 7
 Line 8
 Line 9 RDTERM

 <- ATTN FIFO

CMS Stack
API

 MAKEBUF
 Create a new stack level

 DROPBUF
 Remove one or more stack levels

 SENTRIES
 Return the number of lines in the stack

CMS Stack
Example 1

/* Copy columns one through 10 from one file to a new file */
address COMMAND
Parse upper arg fname .

‘MAKEBUF’
bno = rc
Push 1-10 1

‘COPYFILE’ fname ‘OLD A = NEW A (SPECS NOPROMPT’
errorcode = rc
If errorcode <> 0 Then

Say ‘ERROR copying file’

/* Remove anything left in the stack */
‘DROPBUF’ bno

Exit errorcode

CMS Stack
Example 2

/* Process an entire file using the stack */
address COMMAND
Parse upper arg fname .

‘MAKEBUF’
bno = rc
‘SENTRIES’ /* or queued() which calls it */
startCount = rc

‘EXECIO * DISKR’ fname ’INPUT A’ /* Read file onto the stack */
errorcode = rc
If errorcode = 0 Then

Do
‘SENTRIES’
endCount = rc
lines = endCount – startCount
Do lines

Parse pull nextline
ret = process(nextline)
If ret <>0 Then Leave

End
End

/* Remove anything left in the stack */
‘DROPBUF’ bno
Exit errorcode

Calling REXX
Procedures in
CMS

Loading BREXX in memory

 BREXX originally built as a CMS MODULE file. This
makes REXX load in a fixed storage location. This would
interfere with BREXX calling other CMS programs in
MODULE form.

 The Sixpack developers brought in a program called
RESLIB, from the Waterloo tapes of the era. It allowed
objects to be loaded high in memory and retained
between invocations. That design idea was
implemented in VM/SP as Nucleus Extensions.

 RESLIB allows BREXX and the GCCLIB routines it used
to be loaded in high memory. This removed the
restriction on calling MODULE files from BREXX.

Calling BREXX
Procedures in
CMS

Calling BREXX

 The Sixpack developers copied the implementation
from VM/SP into VM/370 by modifying the EXEC
command.
 That modification changed the EXEC command so that

after it located the target EXEC file, it read the first line
of the file.
 If a REXX comment starting sequence of ‘/*’ was found,

then BREXX is called.
 Otherwise the original EXEC processor is called.

 IBM code does exactly that in VM today.

Calling REXX
Procedures in
CMS

Calling BREXX - problems

 The Sixpack method required creating a new parameter
list and calling DMSREX (the pseudo module loaded in
RESLIB storage). This resulted in incorrect processing
for certain parameter list types.
 CMS limits the call depth to 20 levels. BREXX consumed

2 levels on each call.
 BREXX assumed that calling an EXEC meant calling

BREXX, so REXX calling and original CMS EXEC
program failed.
 BREXX functions could not be called by other programs.

Calling REXX
Procedures in
CMS

Calling BREXX - changes

 Changes in CMS and in BREXX mimicked later IBM code
by directly branching into BREXX from the EXEC
processor and eliminating the parameter list copy.
 BREXX now isolates each REXX program into its own

environment to eliminate crosstalk errors. Calling
EXECs from REXX now always uses the CMS calling
method to force a new runtime environment to be built.

Calling REXX
Functions

 REXX Functions are different than REXX procedures in 2 ways
 They accept multiple argument character strings
 They may return a character string result

 BREXX did not support the calling functions in a general way
 Non-REXX programs could not call REXX functions
 REXX could not call functions written in another language

Calling REXX
Functions

 CMS defined a new calling sequence when REXX was introduced
 The caller could provide multiple argument character strings
 The caller could provide a buffer to accept a character string result
 The Sixpack developers did not support this calling parameter list in

their implementation

 Significant changes were required to BREXX to use the CMS
calling interface

 The changes separated each REXX procedure and external function
into separate invocations of the interpreter. Crosstalk problems
were eliminated.

 REXX no longer depended on an external function being written in
REXX. One impediment to the implementation of REXX function
packages in assembler was removed.

 The CMS EXEC processor no longer had to read the EXEC file.
Function calls to an EXEC were always processed in REXX.

Calling REXX
Functions

Parameter list

SIX WORD PLIST

Command name (EXEC)

EXEC filename EVALBLOCK

Past last byte of EXEC filename Reserved Word

Argument list Size in doublewords

Pointer to result Exact length of result

Result pointer Result character string

--

ARGUMENT LIST

First argument , Length of first argument

Second argument, length of second argument

FFFFFFFF FFFFFFFF

Infrastructure
Requirements
-
Most REXX
programs in the
early 1980s
depended on 3
CMS facilities

 The ability to package external function, written in assembler,
and load them in high memory. These functions required a
global memory capability to share information. For example, a
file OPEN, READ, WRITE, CLOSE function set had to
communicate with each other.

 The ability to issue subcommands to be processed by an active
program. For example, the XEDIT editor could support macro
programs, written in REXX, that could directly issue multiple
XEDIT commands selected under program control.

 The ability for external programs to access the values of REXX
variables and assign new values to those variables.

Nucleus
Extension
Infrastructure

 CMS storage management for loading programs was simple
and restrictive.

 User programs generally ran one at a time and loaded in a fixed
storage location called the “user area”.

 Small programs (usually assembler) smaller than 8K could be
generated to load in the “transient area”. Transient area
programs could be called by user area programs.

Nucleus
Extension
Infrastructure

 ------------------ End of virtual machine

 Free

 Storage

 ------------------ Variable (lowered when high memory allocated)

 User

 Area

 ------------------ 20000

 CMS

 System code

 ------------------ 10000

 Transient area

 ------------------ E000

 CMS Nucleus

 ------------------ Location

Nucleus
Extension
Infrastructure

 Loading CMS programs into high memory presented some
problems. VM/370 and early releases of VM/SP did not have a
relocating loader. Programs loaded as Nucleus extensions had
to be:

 1. Completely relocatable – no program address constants.
Unfortunately, CMS Application Programming Interface (API)
macros had many address constants.

 2. Processed by the OS Linkage Editor into a member of a CMS
Load Module Library (LOADLIB).

 In spite of these restrictions, a Nucleus Extension capability
was available in CMS before REXX was released.

Subcommand
Interface
Infrastructure

 The ability for programs like the original EXEC processor to
function as a macro processor for the EDIT program was not
available in VM/370.

 During an EDIT session, the user could run an EXEC by entering
the name on the command line.

 The EXEC could place a series of EDIT commands onto the
program stack.

 When the EXEC returned control to the EDIT command, the
stacked lines were executed as EDIT command.

 Obviously, functionality was limited, because there was no
ability for an external program to issue an EDIT command
directly and check to return code for success.

Subcommand
Interface
Infrastructure

 The EDGAR editor was an IBM editor available for an extra
charge in VM/370. It used a full screen architecture and had a
product specific calling sequence to allow other programs to
submit EDGAR subcommands.

 VM/SP added a subcommand interface for use primarily by the
XEDIT editor. The EXEC2 processor added an &SUBCOMMAND
directive so that EXEC2 could become a macro processor for
XEDIT. A MACRO, implemented in EXEC2, could be called by
XEDIT, then use program logic to issue the appropriate XEDIT
commands.

Access to
EXEC
Processor
Variables

 VM/SP added the EXECCOMM capability for the EXEC2 processor.

 A program called by EXEC2 could retrieve or assign the values of
EXEC2 variables.

 The program created an SHVBLOCK control block which specified
the name of one EXEC2 variable. Multiple SHVBLOCKS could be
chained in one request to process multiple variables.

 For variable retrieval, the program supplied a buffer address and
length. If the retrieval buffer was too small, the required length was
passed back to the program so that the request could be re-tried.

 For variable assignment, the value buffer and length are passed to
EXEC2.

 EXEC2 variable values are limited to 255 characters.

Access to
EXEC
Processor
Variables

 The EXEC2 variable interface was first used by the new EXECIO
program. It provided:

 I/O to CMS files and Unit Record Devices (Virtua Card Reader,
Printer, and Punch)

 The ability to issue CP commands and retrieve the response
 Data transfer using the stack or direct variable access
 Filtering and selection of input data

Infrastructure
Requirements
-
CMS was
ready

 The ability to package external function, written in assembler,
and load them in high memory. These functions required a
global memory capability to share information. For example, a
file OPEN, READ, WRITE, CLOSE function set had to
communicate.

 The ability to issue subcommands to be processed by an active
program. For example, the XEDIT editor could support macro
programs, written in REXX, that could directly issue multiple
XEDIT commands selected under program control.

 The ability for external programs to access the values of REXX
variables and assign new values to those variables.

 VMSHARE posts from that era mention that Mike Cowlishah
worked closely with the EXEC2 team.

REXX Function
package
support

 REXX used the Nucleus Extension facility to allow an EXEC to call
conforming assembler programs using the External Function
interface. Either a CALL statement or a function call sequence was
used.

 At the time, CMS provided services were generally available only
to assembler programs, so this gave REXX the potential for
complete access to VM services.

 Many VM installations created function packages and distributed
them.

REXX Function
package
support

 REXX dynamically loaded these assembler routines on first use.
 Functions were grouped into one of three packages:

 RXSYSFN – IBM provided
 RXLOCFM – Installation provided
 RXUSERFN – End user provided

 REXX first called an external function, and if it was not found, it tried
to load the function with a call to each package (in the order of User,
Installation, and IBM package) and then re-tried the call to the
function.

 Many REXX packages are available on VM collections of the time
from Waterloo and VMSHARE

Deliverables
for VM/370

 H390-vm@groups.io is the discussion group for Hercules-390
and VM/370. VM modification files for the CMS functions to
support REXX are in the ‘Files’ area in the directory ‘CMS
Extensions for BREXX’

 These modifications are written to be applied to the VM/370
Sixpack Version 1.3

 Support use of REXX as filetype EXEC
 Expand NUCON to 4K
 NUCEXT and SUBCOM support
 MAKEBUF,DROPBUF, and SENTRIES
 Query and SET EXECTRAC
 CMS Support for REXX External function calls

mailto:H390-vm@groups.io

Deliverables
for VM/370

 We hope to establish a new VM/370 deliverable in the near
future which will have these VM modifications already applied.
The latest GCCLIB and BREXX updates will be included in that.

 Adrian has a BREXX deliverable on his github development
environment, which I don’t completely understand

 An implementation of EXECIO is in final testing.

 I plan on making available a BREXX and GCCLIB deliverable
available within a week or two, for direct installation on a
Hercules hosted VM/370 system.

Demo

 This demonstration exploits all the VM changes and
BREXX/GCCLIB updates we have done.

 It is unchanged from the source file on my VM history disk.
 Except for one thing - I remember writing functions to

communicate with the Message System Service with IUCV. That is
not available in VM/370. I did have to apply an update to use VMCF
instead of IUCV to respond to an SMSG command to my server.

Demo

 The demo is for a “WAKEUP” server. Many people wrote code for
this kind of server virtual machine. A VM/370 system, and the users
on that system, produce items like spool files, monitor data,
accounting data, etc. that gets left on the spool system or on disk
that needs to be selectively cleaned up.

 A WAKEUP server has the job of responding to a schedule or other
external events to perform cleanup activities.

Demo

/* Entries in the WAKEUP TIMES file are as follows: *

/* *

/* 1 10 19 28 <-- COLUMNS *

/* *

/* MM/DD/YY HH:MM:SS DATESTAMP USER-TEXT (Done once) *

/* ==/DD/YY HH:MM:SS DATESTAMP USER-TEXT (Once a month) *

/* ==/==/== HH:MM:SS DATESTAMP USER-TEXT (Once a day) *

/* ==/01/== HH:MM:SS DATESTAMP USER-TEXT (On the 1st) *

/* *

/* ALL HH:MM:SS DATESTAMP USER-TEXT (Once a day) *

/* DAYOFWEEK HH:MM:SS DATESTAMP USER-TEXT (Once a week) *

/* WEEKEND HH:MM:SS DATESTAMP USER-TEXT (On weekends) *

/* S-S HH:MM:SS DATESTAMP USER-TEXT (Same as above) *

/* WEEKDAY HH:MM:SS DATESTAMP USER-TEXT (On weekdays) *

/* M-F HH:MM:SS DATESTAMP USER-TEXT (Same as above) *

Demo

/* ==/==/== +05 TIMESTAMP USER-TEXT (Every 5 minutes) */

/* WEEKEND +10:30 TIMESTAMP USER-TEXT (Every 10:30 Weekends) */

/* WEEKDAY +20 TIMESTAMP USER-TEXT (Every 20:00 Weekdays) */

/* DAYOFWEEK +05 TIMESTAMP USER-TEXT (Every 5 MIN On day */

/* */

/* Column 1: Day/Date to wakeup for this event */

/* 10: Time of day interval to wakeup (FILETIME) */

/* 19: Date/Time stamp when completed (FILELAST) */

/* 28: User test for this event (FILEDATA) */

	VM/370 Interfaces for REXX
	REXX and VM started as partners from the beginning
	REXX and VM started as partners from the beginning
	REXX and VM started as partners from the beginning
	VM Versions
	Why Use VM/370?
	Initial BREXX Implementation on VM/370
	Initial BREXX Implementation on VM/370
	Why modify the VM/370 Sixpack?
	New (but Old) Facilities for REXX on VM
	CMS Immediate commands for Halt Execution and Trace control
	CMS Immediate commands for Halt Execution and Trace control
	CMS Stack
	CMS Stack�Multiple Stacks
	CMS Stack�API
	CMS Stack�Example 1
	CMS Stack�Example 2
	Calling REXX Procedures in CMS
	Calling BREXX Procedures in CMS
	Calling REXX Procedures in CMS
	Calling REXX Procedures in CMS
	Calling REXX Functions
	Calling REXX Functions
	Calling REXX Functions��Parameter list
	Infrastructure Requirements -�Most REXX programs in the early 1980s depended on 3 CMS facilities
	Nucleus Extension Infrastructure
	Nucleus Extension Infrastructure
	Nucleus Extension Infrastructure
	Subcommand Interface Infrastructure
	Subcommand Interface Infrastructure
	Access to EXEC Processor Variables
	Access to EXEC Processor Variables
	Infrastructure Requirements -�CMS was ready
	REXX Function package support
	REXX Function package support
	Deliverables for VM/370
	Deliverables for VM/370
	Demo
	Demo
	Demo
	Demo

